This function analyzes F waves in an ECG signal, extracting various characteristics.
Usage
extract_f_waves(
object,
lead = NULL,
qrs_method = "adaptive_svd",
f_characteristics = "amplitude",
...
)
Arguments
- object
An object of class
egm
- lead
Optional. A character string specifying the lead to analyze. If NULL (default), all available leads will be processed.
- qrs_method
Method for ventricular signal removal. Default is "adaptive_svd" for adaptive singular value decomposition.
- f_characteristics
Vector of characteristics to analyze from ECG signal. Options: "amplitude", "approximate_entropy", "dominant_frequency". Please see
calculate_approximate_entropy()
andcalculate_dominant_frequency()
for more details.- ...
Additional arguments passed to methods
References
Park, Junbeom, Chungkeun Lee, Eran Leshem, Ira Blau, Sungsoo Kim, Jung Myung Lee, Jung-A Hwang, Byung-il Choi, Moon-Hyoung Lee, and Hye Jin Hwang. “Early Differentiation of Long-Standing Persistent Atrial Fibrillation Using the Characteristics of Fibrillatory Waves in Surface ECG Multi-Leads.” Scientific Reports 9 (February 26, 2019): 2746. https://doi.org/10.1038/s41598-019-38928-6.
Hyvarinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430.